From tests to proofs |

Why do we trust programs?

CS-214 - 2 Oct 2024
Clement Pit-Claudel

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Quick
announcements

Our first poll
Is out, please help!

Our syllabus
Has all deadlines.

Proofs exercises
Are out.

The debugging guide
Is the perfect companion to
the calc lab.

The debriefs
contain useful information

(we hope!)

e (S214 step-by-step guide

o Triage + diagnose

LaSt wee k o Observe + guess + experiment
e Debugging
Debugg| ng I: the o goes beyond code
30’000 fe et Vi ew o is a scientific endeavor

Only way to get proficient:
practice in the labs!

The 2023 CS214 guide to debugging: on one slide

Process Techniques

Triage phase - Keep notes

- Change one thing at a time
- Apply the scientific method
- Instrument

- Divide and conquer

- Ask for help

Check that there is a problem
Reproduce the issue

Decide whether it's your problem
Write it up

Fwn -

Diagnosis phase Pitfalls

Learn about the system
Simplify, minimize, and isolate
Observe the defect

Guess and verify

Fix and confirm the fix

Prevent regressions

- Random mutation

- Staring aimlessly

- Wasting time

- Assuming a bug went away
- Fixing effects, not causes

- Losing data

ok W

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Computer Science

g OF(' ware E hgl“’l 861’/149

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Making
e Testing: from
trustwo rthy checklists to

S()ftwa re require/ensuring

e Next week:
Specifications: from

1. Write unit tests, integration user stories to math
tests, and assertions to check
that software behaves well

Learning objectives:

2. Next week: Formulate
software specifications

1 (act week] Thic week [Next week
The 2023 CS214 guide to debugging: on one slide

Process Techniques

Triage phase - Keep notes

. - h h. .
1. [Check that there is a problem Change one thing at a time

2. Reproduce the 1ssue - Apply the scientific method |

3. Decide whether it's your problem — =
4. Writeitu - Divide and conquer
. P [- Ask for help |

DlagHOSIS phase PitfallS : 0“ ‘90“’» ow"./

1. | Learn about the system i
- Random mutation

2. Simplify, minimize, and isolate
3. Observe the defect

4. Guessjand verify

5. Fix and confirm the fix

6. Prevent regressions

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

- Staring aimlessly

- Wasting time

- Assuming a bug went away
- Fixing effects, not causes

- Losing data

1. Tracing
recursive functions
println

2. Understanding
Part | stack usage

The dreaded stack overflow

Instrumentation:

debugglng In the Warning: Running code is great,

small but you should also be able to
run code by hand / in your head.

Demo
Instrumenting
recursive code

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Original implementation

def eval(e: Expr): Int =
e match
case Num(n) = n
case Plus(el, e2) =
val resl = eval(el)
val res2 = eval(e2)
resl + res?2

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Traced implementation

def eval(e: Expr, indent: String=""): Int =
println(f"${indent}> ${e}")
val res =
e match
case Num(n) = n
case Plus(el, e2) =

val resl = eval(el, indent + " ")
println(f"${indent}~ ${resi}")
val res2 = eval(e2, indent + " ")

resl + res?2
println(f"${indent}¢ ${res}")
res

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Tracing output

scala> eval(Plus(Plus(Num(3), Num(4)), Num(2)))

> Plus(Plus(Num(3),Num(&)),Num(2))
> Plus(Num(3),Num(4))
> Num(3)
< 3
~ 3
> Num(4)
< 4
7/

0

O NV N

Num(2)
2
é

val res@: Int = 9

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Part ||

Testing: from manual
checks to automated
monitoring

. Acceptance testing

Have the customer click on it

. System testing

Click on it yourself with a checklist

. Integration testing

Run automated tests end to end

. Unit tests

Run per-component tests

. Pre/post conditions

Monitor components as they run

Acceptance testing: have the users click on it

(Some) video game
development

Fix (come of)
the bugs

(et players
ﬁ'ha/ the éagg'

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Acceptance testing: have the users click on it

Release [ab

(Some) CS 214 labs

Fix (come of)

the iccves

(et studentc

Find iccues

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Boids post-release issues

Closed [} Issue created 1 week ago by

Server silently drops exceptions thrown by student code

"Time spent on lab" poll is missing

Ul should have a legend for reference vs student implementation

"Step" button doesn’t work in Ul

If you get any other reports from students during the lab session,
please add them here before 5pm today.

Exercise: What's one danger of acceptance tests?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

System testing: click on it yourself

Change the
coftware

System testing

Go throvgh

usge cageg

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

System testing: click on it yourself

Change the
(ab

(Some) CS 214 labs

(et the AE¢
ﬁ'ha/ the bagg'

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Boids

fo Merged requestedto merge boids into main 1 month ago

Overview 117 Commits 19 Pipelines 10 Changes 18

Exercise: What's one downside of system testing?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Integration testing: run automated tests end to end

Change the
coftware

Integration testing

Run
end-to-end
teste

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

test(" find simple -empty’ returns empty directories and files (2pts)"):
testFind("""

$ find simple -empty
simple/.gitignore
simple/target/streams/.agignore
simple/target/streams/compile/externalDependencyClasspath/ global/streams/out
simple/target/streams/compile/managedClasspath
simple/target/streams/compile/scalacOptions
simple/target/streams/compile/unmanagedClasspath
simple/target/streams/runtime
simple/target/streams/test/.agignore

IIIIII)

Exercise: In which way was this not a fully faithful integration test?
How does this differ from the operation of the real system?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

test("world with single boid, no forces"):
runTestCase("00 singleBoidNoForces")

test("world with three boids, no forces"):
runTestCase("01 threeBoidsNoForces")

test("avoidance doesn't affect lone boid"):
runTestCase("10 singleBoidAvoidance")

test("avoidance between two boids face-to-face"):
runTestCase("11 twoBoidsAvoidanceX")

test("same as above, with orthogonal velocity component"):
runTestCase("12 twoBoidsAvoidanceXY")

test("no avoidance between far boids"):
runTestCase("13 twoBoidsAvoidanceFar")

test("avoidance among mixed boids"):
runTestCase("14 mixedAvoidance")

Exercise: What kind of issues do integration tests not catch?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Integration tests don’t test problems in isolation

def findBySizeGeAndPrint(entry: cs214.Entry, minSize: Long): Boolean 4
val thisFound =
lentry.isDirectory()
&& entry.size() 2 minSize
&& { println(entry.path()); true }

val childrenfFound =
entry.isDirectory()
&& entry.hasChildren()
&& findBySizeGeAndPrint(entry.firstChild(), minSize)

val nextSiblingsFound =
entry.hasNextSibling()
&& findBySizeGeAndPrint(entry.nextSibling(), minSize)

thisFound || childrenFound || nextSiblingsFound

def sizeGe(e: entry):
e.size() 2 minSize

def findBySizeGeAndPrint(entry: cs214.Entry, minSize: Long): Boolean =
findAndPrint(entry, e = !e.isDirectory() && sizeGe(e, minSize))

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Integration tests don’t tell you what's wrong!

random test: simplify 1.0 * (1.0 *
(-4.7199515597602111 * y1 + -8.927959938264125 * Pitfalls
yo - (0.0 + (-4.7199515597602111 * y1 +

-8.927959938264125 * y0)) - 0.0 + 0.0 + 0.0 + - Random mutation
(0.0 - 0.0)) + 1.6 * 0.0 *1.0) /1.0 + (0.0 - - Staring aimlessly
0.0) should be 0.0, but it is actually -0.0 - Wasting time
=> (Obtained
Neg(
e = Number(. .
e = 0.0 Diagnosis phase
)) - Simplify, minimize,
=> Diff (- obtained,) and isolate
-Neg(
- e = Number()
- value = 0.0 Techniques
=53

- Divide and conquer

)

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Unit testing: run automated single-component test

Change the
coftware

Unit fecting

Run

component
teste

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

test("discardWord: empty string"):
assertEquals(discardWord(""), "")

test("discardWord: 1 word with one space before"):
assertEquals(discardWord(" hello"), " hello")

test("discardWord: 1 word with two spaces before"):
assertEquals(discardWord(" hello"), " hello")

test("discardWord: 1 word with one space after"):
assertEquals(discardWord("hello "), " ")

test("discardWord: 1 word with two spaces after"):
assertEquals(discardWord("hello "), " ")

test("discardWord: 1 word with one space before and after"):
assertEquals(discardWord(" hello "), " hello ")

test("discardWord: 2 words with one space between"):
assertEquals(discardWord("hello world"), " world")

Exercise: Will the tests above catch all bugs?
Can unit tests ever catch all bugs?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

A bad discardWords

def discardword(s: String): String = {
if !s.isEmpty &6 'a' < s.head & s.head < 'z' then
discardword(s.tail)
else s

}

Exercise: How can | prevent that?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Some properties of discardWord

“The output of discardWord must always be empty or start with a blank”

ensuring(result =
result.isEmpty ||
result.head.isBlank)

“The output of discardWord must be a suffix of its input”

ensuring(s.endswWith(_))

These properties are executable!

I can make Scala check them as I run my code, on every input I give it.

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

A bad discardWords

def discardword(s: String): String = {
if !s.isEmpty &6 'a' < s.head & s.head < 'z' then
discardword(s.tail)
else s

}

Exercise: How can | prevent that?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Checking that we found a blank space

def discardword(s: String): String = {
if !s.isEmpty &6 'a' < s.head & s.head < 'z' then
discardword(s.tail)
else s
} ensuring(suffix =
suffix.isEmpty || suffix.head.isWhitespace)

discardwWord("ABC def")
// java.lang.AssertionError: assertion failed

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Big idea of monitoring:
Use Integration runs and

real executions to test
Individual components

1 unit test =1 input/output pair

1 monitor = infinitely many tests,
over the whole life of the application

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Check yourself: boids lab

Good:

boids.filter(b =
b I= thisBoid &&
b.position.distanceTo(thisBoid.position) < radius

)

Bad:

boids.filter(b =
b.position.distanceTo(thisBoid.position) < radius

)

Exercise: Which postcondition would have caught the issue?
What should | add to boidsWithinRadius?

requilres and ensuring are not magic!

def sort(l: List[Int]): List[Int] = {

} ensuring (res = (0 to res.length - 2).forall(idx =
res(idx) < res(idx + 1)))

def sort(l: List[Int]): List[Int] = {
val res = ..
assert (0 to res.length - 2).forall(idx =
res(idx) < res(idx + 1))
res

Exercise: =4 Are these postconditions complete?
&4 Do they allow buggy implementations?
=d Would it be enough to check (0 to 1.length - 2)?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

assert is not magic!

def maxMagic(l: List[Int]): Int = {
requires(!l.isEmpty)

} ensuring (res = 1l.forall(x = x < res))

def maxAssert(l: List[Int]): Int =
assert(!1.isEmpty)
val res = ..
assert (res = 1l.forall(x = x < res))
res

def maxByHand(l: List[Int]): Int =
if 1.isEmpty then throw AssertionError()
val res = l.reduce(Math.max)
if !'l.forall(x = x < res) then throw AssertionError()

EPFL CS 214 Softwal:gﬁction Fall 2024 - Clément Pit-Claudel

Exercise: What is the point of tests?

- Tests document what your program is supposed to do
- Tests protect you from regressions (bugs reappearing)
- Tests pinpoint the source of issues

- Tests confirm that your software is fit for release

- Tests detect changes in components you don’t control
- Tests facilitate interaction between components

... more?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Recap: Testing a theater play

Let's assume you're preparing a theater play.

1. You rehearse your monologue in front of the mirror

2. You rehearse a scene in a classroom with the other actor
3. You complete a full rehearsal in the actual theater

4. You perform at the premiere

5. The prompter backstage sees you struggle and feeds you line

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Recap: Testing a theater play

Let's assume you're preparing a theater play.
1. You rehearse your monologue in front of the mirror
= Unit test
2. You rehearse a scene in a classroom with the other actor
= Integration test
3. You complete a full rehearsal in the actual theater
= System test
4. You perform at the premiere
= Acceptance test
5. The prompter backstage sees you struggle and feeds you line

= Monitoring

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Recap exercise
What the test?!

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

m o 0N T w

Your clothes washer
blinks “F09” |/ “E01”

Acceptance test
System test

Integration test

Unit test

L] L]
S 214 SMrQomr!ctanrzlzntgwent Pit-Claudel

m o 0N T w

Your landlord
walks through the
apartment before
returning your
deposit

Acceptance test
System test
Integration test

Unit test

e MQNILONING. .. v

LI =

o

EPFL staff runs
rehearses the
Magistrale
ceremony one day
before the even

Acceptance test
System test
Integration test

Unit test

e MONILOLING o o

LI =

o

The doctor hits
your knee with a
hammer to check
your reflexes

Acceptance test
System test
Integration test

Unit test

e MONILOLING o o

A freight company
runs an empty
train in the
Gotthard tunnel
after SBB

completes repairs

. Acceptance test
. System test
. Integration test

. Unit test

L] L]
eS 214 SMrQors]r!ctanrzlzngwent Pit-Claudel

SBB

o T 9

o

Eﬁ 25214

You smell the milk
to check if it's still
good before making
a renverse

Acceptance test
System test
Integration test

Unit test

MONILONING. ..o

/-

” alpro
~ {BARISTAI

— SOYA—

rein pflanzlich, fantastisch aufschaumbar

Reminder

Fill the poll!

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Syntax recap

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Unit tests: syntax

class XYZTests extends munit.FunSuite:

test("Addition works on 1 + 1"):
assertEquals(1+1, 2)

test("Less-than handles (1, 3)"):
assert(1 < 3)

test("Two is not 5"):
if 2 = 5 then
fail("Uh oh, 2 should not be 5!™)

Full reference: https://scalameta.org/munit/docs/tests.html

Includes info on testing for exceptions, mocking, etc. - check it out!

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

https://scalameta.org/munit/docs/tests.html

Pre/post conditions + assertions: syntax

def sqrt(x: Double): Double = {
require(x = 0)

} ensuring (res = Math.abs(x * x - res) < 0.000001f)

def lookup(bst: BinarySearchTree, k: K): V = {
require bst.IsBST()

val left = bst.leftChild
assert(left = Leaf || left.value < bst.value)

Next week!

Specs: From English
to Math

User stories
Capture needs and goals

Requirements
Say what the user wants

Specifications
Say what the program does

Formal specifications
Tie it all together with code & math

