
EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

From tests to proofs I
Why do we trust programs?

CS-214 - 2 Oct 2024
Clément Pit-Claudel

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Quick
announcements

Our first poll
is out, please help!

Our syllabus
Has all deadlines.

Proofs exercises
Are out.

The debugging guide
is the perfect companion to
the calc lab.

The debriefs
contain useful information
(we hope!)

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Last week
Debugging I: the
30’000 feet view

● CS214 step-by-step guide
○ Triage + diagnose

○ Observe + guess + experiment

● Debugging
○ goes beyond code

○ is a scientific endeavor

Only way to get proficient:
practice in the labs!

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Process

Triage phase

1. Check that there is a problem
2. Reproduce the issue
3. Decide whether it’s your problem
4. Write it up

Diagnosis phase

1. Learn about the system
2. Simplify, minimize, and isolate
3. Observe the defect
4. Guess and verify
5. Fix and confirm the fix
6. Prevent regressions

The 2023 CS214 guide to debugging: on one slide

Techniques

- Keep notes
- Change one thing at a time
- Apply the scientific method
- Instrument
- Divide and conquer
- Ask for help

Pitfalls

- Random mutation
- Staring aimlessly
- Wasting time
- Assuming a bug went away
- Fixing effects, not causes
- Losing data

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Software Engineering

Computer Science

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Making
trustworthy

software
Learning objectives:

1. Write unit tests, integration
tests, and assertions to check

that software behaves well

2. Next week: Formulate
software specifications

● Testing: from
checklists to
require/ensuring

● Next week:
Specifications: from
user stories to math

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Process

Triage phase

1. Check that there is a problem
2. Reproduce the issue
3. Decide whether it’s your problem
4. Write it up

Diagnosis phase

1. Learn about the system
2. Simplify, minimize, and isolate
3. Observe the defect
4. Guess and verify
5. Fix and confirm the fix
6. Prevent regressions

The 2023 CS214 guide to debugging: on one slide

Techniques

- Keep notes
- Change one thing at a time
- Apply the scientific method
- Instrument
- Divide and conquer
- Ask for help

Pitfalls

- Random mutation
- Staring aimlessly
- Wasting time
- Assuming a bug went away
- Fixing effects, not causes
- Losing data

: On your own!

Last week This week Next week

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

1. Tracing
recursive functions
println

2. Understanding
stack usage
The dreaded stack overflow

Warning: Running code is great,
but you should also be able to
run code by hand / in your head.

Part I
Instrumentation:
debugging in the

small

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Demo
Instrumenting
recursive code

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Original implementation

def eval(e: Expr): Int =
 e match
 case Num(n) => n
 case Plus(e1, e2) =>
 val res1 = eval(e1)
 val res2 = eval(e2)
 res1 + res2

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Traced implementation

def eval(e: Expr, indent: String=""): Int =
 println(f"${indent}→ ${e}")
 val res =
 e match
 case Num(n) => n
 case Plus(e1, e2) =>
 val res1 = eval(e1, indent + " ")
 println(f"${indent}~ ${res1}")
 val res2 = eval(e2, indent + " ")
 res1 + res2
 println(f"${indent}← ${res}")
 res

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Tracing output

scala> eval(Plus(Plus(Num(3), Num(4)), Num(2)))

→ Plus(Plus(Num(3),Num(4)),Num(2))
 → Plus(Num(3),Num(4))

→ Num(3)
← 3

 ~ 3
→ Num(4)
← 4

 ← 7
~ 7
 → Num(2)
 ← 2
← 9

val res0: Int = 9

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Part II
Testing: from manual
checks to automated

monitoring

1. Acceptance testing
Have the customer click on it

2. System testing
Click on it yourself with a checklist

3. Integration testing
Run automated tests end to end

4. Unit tests
Run per-component tests

5. Pre/post conditions
Monitor components as they run

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Acceptance testing: have the users click on it

(Some) video game
development

Ship buggy
game

Let players
find the bugs

Fix (some of)
the bugs

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Acceptance testing: have the users click on it

(Some) CS 214 labs

Release lab

Let students
find issues

Fix (some of)
the issues

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel Exercise: What’s one danger of acceptance tests?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

System testing: click on it yourself

System testing

Change the
software

Go through
use cases

Fix the bugs

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

System testing: click on it yourself

(Some) CS 214 labs

Change the
lab

Let the AEs
find the bugs

Fix issues

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel Exercise: What’s one downside of system testing?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Integration testing: run automated tests end to end

Integration testing

Change the
software

Run
end-to-end

tests

Fix issues

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Exercise: In which way was this not a fully faithful integration test?
How does this differ from the operation of the real system?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel Exercise: What kind of issues do integration tests not catch?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Integration tests don’t test problems in isolation

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Integration tests don’t tell you what’s wrong!

Pitfalls

- Random mutation
- Staring aimlessly
- Wasting time

Techniques

- Divide and conquer

Diagnosis phase

- Simplify, minimize,
and isolate

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Unit testing: run automated single-component test

Unit testing

Change the
software

Run
component

tests

Fix issues

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Exercise: Will the tests above catch all bugs?
🔜 Can unit tests ever catch all bugs?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

A bad discardWords

def discardWord(s: String): String = {
 if !s.isEmpty && 'a' <= s.head && s.head <= 'z' then

discardWord(s.tail)
 else s // Blank space found, exit
}

Exercise: How can I prevent that?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Some properties of discardWord

“The output of discardWord must always be empty or start with a blank”

ensuring(result =>
 result.isEmpty ||
 result.head.isBlank)

“The output of discardWord must be a suffix of its input”

ensuring(s.endsWith(_))

These properties are executable!

I can make Scala check them as I run my code, on every input I give it.

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

A bad discardWords

def discardWord(s: String): String = {
 if !s.isEmpty && 'a' <= s.head && s.head <= 'z' then

discardWord(s.tail)
 else s // Blank space found, exit
}

Exercise: How can I prevent that?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Checking that we found a blank space

def discardWord(s: String): String = {
 if !s.isEmpty && 'a' <= s.head && s.head <= 'z' then

discardWord(s.tail)
 else s // Blank space found, exit
} ensuring(suffix =>
 suffix.isEmpty || suffix.head.isWhitespace)

discardWord("ABC def")
// java.lang.AssertionError: assertion failed
// at scala.Predef$.assert(Predef.scala:264)
// at scala.Predef$Ensuring$.ensuring$extension(Predef.scala:359)
// at repl.MdocSession$MdocApp.discardWord(debug.worksheet.sc:78)
// at repl.MdocSession$MdocApp.<init>(debug.worksheet.sc:83)
// at repl.MdocSession$.app(debug.worksheet.sc:3)

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Big idea of monitoring:
Use integration runs and
real executions to test
individual components

1 unit test

1 monitor

= 1 input/output pair

= infinitely many tests,
 over the whole life of the application

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Good:

Bad:

Exercise: Which postcondition would have caught the issue?
What should I add to boidsWithinRadius?

Check yourself: boids lab

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

requires and ensuring are not magic!

def sort(l: List[Int]): List[Int] = {
 …
} ensuring (res => (0 to res.length - 2).forall(idx =>
 res(idx) <= res(idx + 1)))

def sort(l: List[Int]): List[Int] = {
 val res = …
 assert (0 to res.length - 2).forall(idx =>
 res(idx) <= res(idx + 1))
 res
}

Exercise: 🔜 Are these postconditions complete?
🔜 Do they allow buggy implementations?

🔜 Would it be enough to check (0 to l.length - 2)?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

assert is not magic!

def maxMagic(l: List[Int]): Int = {
 requires(!l.isEmpty)
 …
} ensuring (res => l.forall(x => x <= res))

def maxAssert(l: List[Int]): Int =
 assert(!l.isEmpty)
 val res = …
 assert (res => l.forall(x => x <= res))
 res

def maxByHand(l: List[Int]): Int =
 if l.isEmpty then throw AssertionError()
 val res = l.reduce(Math.max)
 if !l.forall(x => x <= res) then throw AssertionError()
 res

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

- Tests document what your program is supposed to do

- Tests protect you from regressions (bugs reappearing)

- Tests pinpoint the source of issues

- Tests confirm that your software is fit for release

- Tests detect changes in components you don’t control

- Tests facilitate interaction between components

- … more?

Exercise: What is the point of tests?

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Recap: Testing a theater play

Let’s assume you’re preparing a theater play.

1. You rehearse your monologue in front of the mirror

2. You rehearse a scene in a classroom with the other actor

3. You complete a full rehearsal in the actual theater

4. You perform at the premiere

5. The prompter backstage sees you struggle and feeds you line

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Recap: Testing a theater play

Let’s assume you’re preparing a theater play.

1. You rehearse your monologue in front of the mirror

⇒ Unit test

2. You rehearse a scene in a classroom with the other actor

⇒ Integration test

3. You complete a full rehearsal in the actual theater

⇒ System test

4. You perform at the premiere

⇒ Acceptance test

5. The prompter backstage sees you struggle and feeds you line

⇒ Monitoring

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Recap exercise
What the test?!

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Your clothes washer
blinks “F09” / “E01”

a. Acceptance test

b. System test

c. Integration test

d. Unit test

e. Monitoring

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Your landlord
walks through the
apartment before
returning your
deposit

a. Acceptance test

b. System test

c. Integration test

d. Unit test

e. Monitoring

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

EPFL staff runs
rehearses the
Magistrale
ceremony one day
before the even

a. Acceptance test

b. System test

c. Integration test

d. Unit test

e. Monitoring EPFL

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

The doctor hits
your knee with a
hammer to check
your reflexes

a. Acceptance test

b. System test

c. Integration test

d. Unit test

e. Monitoring

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

A freight company
runs an empty
train in the
Gotthard tunnel
after SBB
completes repairs

a. Acceptance test

b. System test

c. Integration test

d. Unit test

e. Monitoring SBB

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

You smell the milk
to check if it’s still
good before making
a renversé

a. Acceptance test

b. System test

c. Integration test

d. Unit test

e. Monitoring

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Reminder
Fill the poll!

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Syntax recap

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Unit tests: syntax

class XYZTests extends munit.FunSuite:

 test("Addition works on 1 + 1"):
 assertEquals(1+1, 2)

 test("Less-than handles (1, 3)"):
 assert(1 < 3)

 test("Two is not 5"):
 if 2 == 5 then
 fail("Uh oh, 2 should not be 5!")

Full reference: https://scalameta.org/munit/docs/tests.html
Includes info on testing for exceptions, mocking, etc. → check it out!

https://scalameta.org/munit/docs/tests.html

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Pre/post conditions + assertions: syntax

def sqrt(x: Double): Double = {
 require(x >= 0)
 …
} ensuring (res => Math.abs(x * x - res) < 0.000001f)

def lookup(bst: BinarySearchTree, k: K): V = {
 require bst.IsBST()
 …

 val left = bst.leftChild
 assert(left == Leaf || left.value < bst.value)
 …
}

EPFL CS 214 Software Construction Fall 2024 - Clément Pit-Claudel

Next week!
Specs: From English

to Math

1. User stories
Capture needs and goals

2. Requirements
Say what the user wants

3. Specifications
Say what the program does

4. Formal specifications
Tie it all together with code & math

